Avicenna Journal of Dental Research

Published by: Kowsar

Controlled Release of Drugs for Management of Pulpitis

Zahra Jaberi-Ansari 1 , Malihe Ekrami 1 and Hanieh Nojehdehian 2 , *
Authors Information
1 Department of Operative Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Department of Dental Materials, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • Avicenna Journal of Dental Research: June 01, 2013, 6 (1); e21610
  • Published Online: June 30, 2013
  • Article Type: Review Article
  • Received: June 29, 2013
  • Accepted: July 13, 2013
  • DOI: 10.17795/ajdr-21610

To Cite: Jaberi-Ansari Z, Ekrami M, Nojehdehian H. Controlled Release of Drugs for Management of Pulpitis, Avicenna J Dent Res. 2013 ;6(1):e21610. doi: 10.17795/ajdr-21610.

Copyright © 2013, Hamadan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000. 2002; 28: 12-55[PubMed]
  • 2. Siqueira JF, Jr. Endodontic infections: concepts, paradigms, and perspectives. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 94(3): 281-93[PubMed]
  • 3. Peciuliene V, Reynaud AH, Balciuniene I, Haapasalo M. Isolation of yeasts and enteric bacteria in root-filled teeth with chronic apical periodontitis. Int Endod J. 2001; 34(6): 429-34[PubMed]
  • 4. Kayaoglu G, Orstavik D. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med. 2004; 15(5): 308-20[PubMed]
  • 5. Dahlen G, Samuelsson W, Molander A, Reit C. Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiol Immunol. 2000; 15(5): 309-12[PubMed]
  • 6. Pinheiro ET, Gomes BP, Ferraz CC, Teixeira FB, Zaia AA, Souza Filho FJ. Evaluation of root canal microorganisms isolated from teeth with endodontic failure and their antimicrobial susceptibility. Oral Microbiol Immunol. 2003; 18(2): 100-3[PubMed]
  • 7. Pinheiro ET, Gomes BP, Drucker DB, Zaia AA, Ferraz CC, Souza-Filho FJ. Antimicrobial susceptibility of Enterococcus faecalis isolated from canals of root filled teeth with periapical lesions. Int Endod J. 2004; 37(11): 756-63[DOI][PubMed]
  • 8. Goodson J. Pharmacokinetic principles controlling efficacy of oral therapy. J Dent Res. 1989; 68: 1625-32
  • 9. Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev. 2005; 57(3): 357-76[DOI][PubMed]
  • 10. Park JH, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs. Molecules. 2005; 10(1): 146-61[PubMed]
  • 11. Alvarez AL, Espinar FO, Mendez JB. The application of microencapsulation techniques in the treatment of endodontic and periodontal diseases. Pharmaceutics. 2011; 3(3): 538-71[DOI][PubMed]
  • 12. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997; 28(1): 5-24[PubMed]
  • 13. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003; 5: 1-16[PubMed]
  • 14. Shi G, Cai Q, Wang C, Lu N, Wang S, Bei J. Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid). Polymer Adv Tech. 2002; 13(3‐4): 227[DOI]
  • 15. Lavik E, Langer R. Scaffolding In Tissue Engineering. 2005; : 481-99
  • 16. Francis L, Meng D, Knowles J, Keshavarz T, Boccaccini AR, Roy I. Controlled Delivery of Gentamicin Using Poly(3-hydroxybutyrate) Microspheres. Int J Mol Sci. 2011; 12(7): 4294-314[DOI][PubMed]
  • 17. Blanco-Prieto MJ, Lecaroz C, Renedo MJ, Kunkova J, Gamazo C. In vitro evaluation of gentamicin released from microparticles. Int J Pharm. 2002; 242(1-2): 203-6[PubMed]
  • 18. Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013; 34(4): 1402-12[DOI][PubMed]
  • 19. Schnieders J, Gbureck U, Thull R, Kissel T. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006; 27(23): 4239-49[DOI][PubMed]
  • 20. Imbuluzqueta E, Elizondo E, Gamazo C, Moreno-Calvo E, Veciana J, Ventosa N, et al. Novel bioactive hydrophobic gentamicin carriers for the treatment of intracellular bacterial infections. Acta Biomater. 2011; 7(4): 1599-608[DOI][PubMed]
  • 21. Ahuja A, Ali J, Sarkar R, Shareef A, Khar RK. Targeted retentive device for oro-dental infections: formulation and development. Int J Pharm. 2003; 259(1-2): 47-55[PubMed]
  • 22. Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res. 1999; 46(2): 236-44[PubMed]
  • 23. Mu L, Feng SS. PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm Res. 2003; 20(11): 1864-72[PubMed]
  • 24. Huang J, Wong HL, Zhou Y, Wu XY, Grad H, Komorowski R, et al. In vitro studies and modeling of a controlled-release device for root canal therapy. J Control Release. 2000; 67(2-3): 293-307[PubMed]
  • 25. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010; 36(2): 322-8[DOI][PubMed]
  • 26. Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008; 34(12): 1515-20[DOI][PubMed]
  • 27. Shrestha A, Fong SW, Khoo BC, Kishen A. Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod. 2009; 35(7): 1028-33[DOI][PubMed]
  • 28. Sousa FF, Luzardo-Alvarez A, Perez-Estevez A, Seoane-Prado R, Blanco-Mendez J. Development of a novel AMX-loaded PLGA/zein microsphere for root canal disinfection. Biomed Mater. 2010; 5(5): 55008[DOI][PubMed]
  • 29. Srirangarajan S, Mundargi RC, Ravindra S, Setty SB, Aminabhavi TM, Thakur S. Randomized, controlled, single-masked, clinical study to compare and evaluate the efficacy of microspheres and gel in periodontal pocket therapy. J Periodontol. 2011; 82(1): 114-21[DOI][PubMed]
  • 30. Gopinath V, Ramakrishnan T, Emmadi P, Ambalavanan N, Mammen B. Effect of a controlled release device containing minocycline microspheres on the treatment of chronic periodontitis: A comparative study. J Indian Soc Periodontol. 2009; 13(2): 79-84[DOI][PubMed]
  • 31. Wang LC, Wu H, Chen XG, De Li L, Ji QX, Liu CS, et al. Biological evaluation of a novel chitosan-PVA-based local delivery system for treatment of periodontitis. J Biomed Mater Res A. 2009; 91(4): 1065-76[DOI][PubMed]
  • 32. Renvert S, Lessem J, Dahlen G, Renvert H, Lindahl C. Mechanical and repeated antimicrobial therapy using a local drug delivery system in the treatment of peri-implantitis: a randomized clinical trial. J Periodontol. 2008; 79(5): 836-44[DOI][PubMed]
  • 33. Bruschi ML, de Freitas O, Lara EH, Panzeri H, Gremiao MP, Jones DS. Precursor system of liquid crystalline phase containing propolis microparticles for the treatment of periodontal disease: development and characterization. Drug Dev Ind Pharm. 2008; 34(3): 267-78[DOI][PubMed]
  • 34. Hellstrom MK, McClain PK, Schallhorn RG, Bellis L, Hanlon AL, Ramberg P. Local minocycline as an adjunct to surgical therapy in moderate to severe, chronic periodontitis. J Clin Periodontol. 2008; 35(6): 525-31[DOI][PubMed]
  • 35. Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB, et al. Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007; 119(1): 59-68[DOI][PubMed]
  • 36. Goodson JM, Gunsolley JC, Grossi SG, Bland PS, Otomo-Corgel J, Doherty F, et al. Minocycline HCl microspheres reduce red-complex bacteria in periodontal disease therapy. J Periodontol. 2007; 78(8): 1568-79[DOI][PubMed]
  • 37. Park YJ, Lee JY, Yeom HR, Kim KH, Lee SC, Shim IK, et al. Injectable polysaccharide microcapsules for prolonged release of minocycline for the treatment of periodontitis. Biotechnol Lett. 2005; 27(22): 1761-6[DOI][PubMed]
  • 38. Oringer RJ, Al-Shammari KF, Aldredge WA, Iacono VJ, Eber RM, Wang HL, et al. Effect of locally delivered minocycline microspheres on markers of bone resorption. J Periodontol. 2002; 73(8): 835-42[DOI][PubMed]
  • 39. Veronese FM, Marsilio F, Lora S, Caliceti P, Passi P, Orsolini P. Polyphosphazene membranes and microspheres in periodontal diseases and implant surgery. Biomaterials. 1999; 20(1): 91-8[DOI]
  • 40. Esposito E, Cortesi R, Cervellati F, Menegatti E, Nastruzzi C. Biodegradable microparticles for sustained delivery of tetracycline to the periodontal pocket: formulatory and drug release studies. J Microencapsul. 1997; 14(2): 175-87[DOI][PubMed]
  • 41. Briones M, Singh M, Ugozzoli M, Kazzaz J, Klakamp S, Ott G, et al. The preparation, characterization, and evaluation of cationic microparticles for DNA vaccine delivery. Pharm Res. 2001; 18(5): 709-12[PubMed]
  • 42. Johansen P, Estevez F, Zurbriggen R, Merkle HP, Gluck R, Corradin G, et al. Towards clinical testing of a single-administration tetanus vaccine based on PLA/PLGA microspheres. Vaccine. 2000; 19(9-10): 1047-54[PubMed]
  • 43. Rassu G, Gavini E, Jonassen H, Zambito Y, Fogli S, Breschi MC, et al. New chitosan derivatives for the preparation of rokitamycin loaded microspheres designed for ocular or nasal administration. J Pharm Sci. 2009; 98(12): 4852-65[DOI][PubMed]
  • 44. Johansen P, Men Y, Merkle HP, Gander B. Revisiting PLA/PLGA microspheres: an analysis of their potential in parenteral vaccination. Eur J Pharm Biopharm. 2000; 50(1): 129-46[PubMed]
  • 45. Oh YJ, Lee J, Seo JY, Rhim T, Kim SH, Yoon HJ, et al. Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model. J Control Release. 2011; 150(1): 56-62[DOI][PubMed]
  • 46. Allison SD. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. J Pharm Sci. 2008; 97(6): 2022-35[DOI][PubMed]
  • 47. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release. 2008; 125(3): 193-209[DOI][PubMed]
  • 48. Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci. 2008; 97(1): 71-87[DOI][PubMed]
  • 49. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 2011; 3(3): 1377-97[DOI][PubMed]
  • 50. Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012; 64(12): 1090-110[DOI][PubMed]
  • 51. Poletto FS, Jager E, Re MI, Guterres SS, Pohlmann AR. Rate-modulating PHBHV/PCL microparticles containing weak acid model drugs. Int J Pharm. 2007; 345(1-2): 70-80[DOI][PubMed]
  • 52. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001; 22(3): 231-41[PubMed]
  • 53. Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm Res. 2003; 20(7): 1055-62[PubMed]
  • 54. Kassab AC, Xu K, Denkbas EB, Dou Y, Zhao S, Piskin E. Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomater Sci Polym Ed. 1997; 8(12): 947-61[PubMed]
  • 55. Naraharisetti PK, Lewa MDN, Fub YC. Gentamicin-loaded discs and microspheres and their modifications: Characterization and in vitro release. Biomaterial. 2005; 77B: 329-37
  • 56. Lee DY, Spangberg LS, Bok YB, Lee CY, Kum KY. The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 100(1): 105-11[DOI][PubMed]
  • 57. Luzardo-Alvarez A, Blanco-Mendez J, Varela-Patino P, Biedma BM. Amoxicillin-Loaded Sponges Made of Collagen and Poly[(methyl vinyl ether)-co-(maleic anhydride)] for Root Canal Treatment: Preparation, Characterization and In Vitro Cell Compatibility. J Biomater Sci Polym Ed. 2010; [DOI][PubMed]
  • 58. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003; 4(6): 1457-65[DOI][PubMed]
  • 59. Raafat D, von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008; 74(12): 3764-73[DOI][PubMed]
  • 60. Muzzarelli RAA. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohyd Polym. 2009; 77(1): 1-9[DOI]
  • 61. Sun L, Du Y, Fan L, Chen X, Yang J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer. 2006; 47(6): 1796-804[DOI]
  • 62. Ezoddini-Ardakani F, Azam AN, Yassaei S, Fatehi F. Effects of chitosan on dental bone repair. Health. 2011; 3(4): 200-5[DOI]
  • 63. Lamont RS, Jenkinson HF. Oral Bacterial Ecology: The Molecular Basis. 2000; : 131-68
  • 64. Byström A, Sundqvist G. Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy. Oral Surg Med Pathol. 1983; 55(3): 307-12[DOI]
  • 65. Lee Y, Han SH, Hong SH, Lee JK, Ji H, Kum KY. Antimicrobial efficacy of a polymeric chlorhexidine release device using in vitro model of Enterococcus faecalis dentinal tubule infection. J Endod. 2008; 34(7): 855-8[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments